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We investigate the geometric properties of loops on two-dimensional lattice graphs, where edge weights are
drawn from a distribution that allows for positive and negative weights. We are interested in the appearance of
spanning loops of total negative weight. The resulting percolation problem is fundamentally different from
conventional percolation, as we have seen in a previous study of this model for the undiluted case. Here, we
investigate how the percolation transition is affected by additional dilution. We consider two types of dilution:
either a certain fraction of edges exhibits zero weight, or a fraction of edges is even absent. We study these
systems numerically using exact combinatorial optimization techniques based on suitable transformations of
the graphs and applying matching algorithms. We perform a finite-size scaling analysis to obtain the phase
diagram and determine the critical properties of the phase boundary. We find that the first type of dilution does
not change the universality class compared to the undiluted case whereas the second type of dilution leads to
a change in the universality class.
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I. INTRODUCTION

Percolation is one of the most fundamental problems in
statistical mechanics �1,2�. Its ideas apply to physical disci-
plines as different as solid-state physics and cosmology and
it has the ability to describe many phase transitions in a
completely geometric and probabilistic context. The pivotal
question in percolation theory is that of connectivity. Con-
sider for example random-bond percolation where one stud-
ies a lattice that is randomly filled with a certain fraction of
edges. Clusters of connected sites are then analyzed regard-
ing their geometric properties. Depending on the fraction of
edges on the lattice, the geometric properties of the clusters
change, leading from a phase with rather small and discon-
nected clusters to a phase where there is basically one large
cluster dominating the lattice. Therein, the appearance of an
infinite, i.e., percolating, cluster is described by a second-
order phase transition. In the past decades, a large number of
percolation problems have been investigated in various con-
texts through numerical simulations. Among those are prob-
lems where the objects of interest are stringlike, rather than
clusters as in the standard case explained above. The geomet-
ric properties of stringlike objects have been studied and
quantified in diverse contexts �3–10�. Recently �11� we have
investigated negative-weight percolation �NWP�, a problem
in similar vein but with subtle differences compared to other
stringlike percolation problems. In NWP, we consider a regu-
lar lattice with periodic boundary conditions where all adja-
cent sites are joined by undirected edges. Weights are as-
signed to the edges, representing quenched random variables
drawn from a distribution that allows for edge weights of
either sign. The details of the weight distribution are therein
controlled by a disorder parameter. For a given realization of

the disorder, we then ask for a configuration of loops, i.e.,
closed polygons on the lattice, such that the sum of the edge
weights that make up the loops is minimal and negative. The
problem of finding these loops can be cast into a minimum-
weight-path �MWP� problem as will be explained below in
more detail. This MWP is also of relevance for the problem
of finding domain-wall excitations in 2d Ising spin glasses
�12�. One feature of this particular MWP problem is that
there is no transitivity, meaning that a path having total nega-
tive weight can have extensive subpaths that have positive
weight. This is one feature that distinguishes NWP from
standard bond percolation. We further impose the constraint
that the loops are not allowed to intersect; as a result there is
no definition of clusters in NWP.

Previously we investigated NWP on two-dimensional lat-
tices. We found a critical value of the disorder parameter
above which percolating loops emerge in the limit of large
system sizes. We further determined a whole set of critical
exponents that characterize the underlying disorder-induced
and geometric phase transition. These exponents were clearly
different from those describing other percolation transitions.
The critical exponents were found to be universal in 2d,
meaning that they do not depend on the details of the disor-
der distribution or the lattice geometry. Moreover, the loca-
tion of the critical point and the correlation-length exponent
turned out to agree, within error bars, with those that de-
scribe the T=0 spin glass to ferromagnet transition for ran-
dom bond Ising models in 2d, see �13�. This highlights the
close connection of the two optimization problems �the latter
consists of finding a ground-state spin configuration for a
given realization of the bond disorder� and hence, in study-
ing NWP, one may possibly understand the latter physical
transition, as mentioned in Ref. �11�.

Albeit there are essential differences between NWP and
usual bond percolation described above, the features of the
latter are important if we ask for the effect of dilution on the
characteristics of NWP. Here, we investigate the effect of
dilution on the critical properties of NWP. Therefore we use
observables from percolation theory and a finite-size-scaling
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�FSS� analysis to probe critical lines in the disorder-dilution
plane for two different types of dilution described below.
Further, we check whether the critical exponents change
along the critical lines. We therefore analyze the critical ex-
ponent � that describes the divergence of a typical length
scale in NWP as we approach the critical point. For one
distinguished point in the disorder-dilution plane, a more
complete analysis involving more critical exponents is given
as well.

The paper is organized as follows. In Sec. II, we introduce
the model in more detail and we outline the algorithm we
used to obtain the loop configurations. In Sec. III, we list the
results of our numerical simulations followed by a summary
and conclusions in Sec. IV.

II. MODEL AND ALGORITHM

In the framework of this paper, we consider 2d square
lattices G= �V ,E� with side length L and fully periodic
boundary conditions �BCs�, i.e., N=L�L sites i�V and a
maximal number of 2N �in case of no dilution� edges �i , j�
�E joining adjacent sites i , j�V. We further assign a weight
or cost �ij to each edge contained in E, representing
quenched random variables that introduce disorder to the lat-
tice. One realization of the undiluted disorder therein con-
sists of a fraction � of edge weights drawn from a Gaussian
distribution with zero mean and unit width, together with
edges with unit weight �fraction 1−��. This weight distribu-
tion explicitly allows for loops L, i.e., closed polygons on
the lattice, with a negative total weight �L=��i,j��L�ij. For
any nonzero value of the disorder parameter �, a sufficiently
large lattice will exhibit at least small loops with a weight
smaller than zero. If the disorder parameter is sufficiently
large, even large loops with negative weight will appear,
which span the system. Hence, the system is percolating in
this case. Here, as an additional source of disorder, we con-
sider two different types of dilution, affecting the lattice
edges.

�i� Type I: the disorder is characterized by a fraction pI of
edge weights �ij =0. This does not mean that the respective
bonds are absent in terms of bond percolation. Instead, a
loop can include these edges without an increase in the con-
figurational energy; see Fig. 1�a�;

�ii� Type II: the lattice is diluted by a fraction pII of absent
bonds. Depending on the value of pII, this induces a usual
random-bond percolation process that will affect the
negative-weight percolation of loops; see Fig. 1�b�.

Given G together with a realization of the disorder, we
determine a set C of loops such that the configurational en-
ergy, defined as the sum of all the loop weights E
=�L�C�L, is minimized. As further optimization constraint,
the loops are not allowed to intersect and generally, the
weight of an individual loop is smaller than zero. Note that C
may also be empty. Clearly, the configurational energy E is
the quantity subject to optimization and the result of the
optimization procedure is a set of loops C, obtained using an
appropriate transformation of the original graph as detailed
in �14�. So as to identify the edges that constitute the loops
for a particular instance of the disorder, we need to obtain a

minimum-weighted perfect matching �MWPM� �15,16� on
the transformed graph.

Here, we give a brief description of the algorithmic pro-
cedure that yields a minimum-weight set of loops for a given
realization of the disorder. Figure 2 illustrates the three basic
steps, detailed below.

�1� Each edge, joining adjacent sites on the original graph
G, is replaced by a path of three edges. Therefore, two “ad-
ditional” sites have to be introduced for each edge in E.
Therein, one of the two edges connecting an additional site
to an original site gets the same weight as the corresponding

(a) (b)

percolating loops

FIG. 1. Samples of L=64 loop configurations for the two differ-
ent types of disorder investigated. Percolating loops appear as
dashed lines and are marked by arrows. �a� �=0.1, pI=0.3940,
where pI is the fraction of edges with weight equal to zero. A loop
can include those edges without increasing its configurational en-
ergy. Edges with zero weight that are included in loops are colored
gray. �b� �=1.0, pII=0.4998, where pII is the fraction of missing
edges on the lattice. Those edges that comprise the cluster of con-
nected edges on which the percolating loop is located appear as thin
gray lines.
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FIG. 2. �Color online� Illustration of the algorithmic procedure.
�a� Original lattice G with edge weights, �b� auxiliary graph GA

with proper weight assignment: black edges carry the same weight
as the respective edge in the original graph and gray edges carry
zero weight. �c� Minimum-weight perfect matching M: bold edges
are matched and dashed edges are unmatched. �d� Loop configura-
tion �bold edges� that corresponds to the MWPM depicted in �c�.
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edge in G. The remaining two edges get zero weight. The
original sites i�V are then “duplicated,” i.e., i→ i1 , i2, along
with all their incident edges and the corresponding weights.
For each of these pairs of duplicated sites, one additional
edge �i1 , i2� with zero weight is added that connects the two
sites i1 and i2. The resulting auxiliary graph GA= �VA ,EA� is
shown in Fig. 2�b�, where additional sites appear as squares
and duplicated sites as circles. Figure 2�b� also illustrates the
weight assignment on the transformed graph GA. Note that
while the original graph �Fig. 2�a�� is symmetric, the trans-
formed graph �Fig. 2�b�� is not. This is due to the details of
the mapping procedure and the particular weight assignment
we have chosen. A more extensive description of the map-
ping can be found in �12�.

�2� A MWPM on the auxiliary graph is determined via
exact combinatorial optimization algorithms �17�. A MWPM
is a minimum-weighted subset M of EA, such that each site
contained in VA is met by precisely one edge in M. This is
illustrated in Fig. 2�c�, where the solid edges represent M for
the given weight assignment. The dashed edges are not
matched. Due to construction, the auxiliary graph consists of
an even number of sites and since there are no isolated sites,
it is guaranteed that a perfect matching exists. Even if there
is no edge on G, i.e., pII=1 in terms of the dilution intro-
duced above. In that extreme case, GA consists solely of the
duplicated sites that are joined pairwise by zero-weighted
edges. A perfect matching trivially exists and the correspond-
ing MWPM has weight zero.

�3� Finally it is possible to find a relation between the
matched edges M on GA and a configuration of negative-
weighted loops C on G by tracing the steps of the transfor-
mation �1� back. In this regard note that each edge contained
in M that connects an additional site �square� to a duplicated
site �circle� corresponds to an edge on G that is part of a
loop; see Fig. 2�d�. More precisely, there are always two
such edges in M that correspond to one-loop segment on G.
All the edges in M that connect like sites �i.e., duplicated-
duplicated, or additional-additional� carry zero weight and
do not contribute to a loop on G. Once the set C of loops is
found, a depth-first search �14,16� can be used to explore C
and to determine the geometric properties of the individual
loops. For the weight assignment in Fig. 2�a�, there is only
one loop with weight �L=−2 and length �=8.

Note that the result of the calculation is a collection C of
loops such that the total loop weight, and consequently the
configurational energy E, is minimized. Hence, one obtains a
global collective optimum of the system. Obviously, all loops
that contribute to C possess a negative weight. Regarding the
weight assignment in step �1� there are different possibilities
that all result in equivalent sets of matched edges on the
transformed lattice, corresponding to the minimum-weight
collection of loops on the original lattice. Some of these
weight assignments lead to a more symmetric transformed
graph, see e.g., �14�. However, this is only a technical issue
that does not affect the resulting loop configuration. Albeit
the transformed graph is not symmetric, the resulting graph
�Fig. 2�d�� is again symmetric.

In the following we will use the procedure outlined above
to investigate the effect of dilution on the critical properties
of NWP.

III. RESULTS

So as to clarify the effect of dilution on the critical prop-
erties of NWP, we first need to locate the critical lines in the
�− pI/II planes that separate the percolating from the nonper-
colating domains. Therefore, we use observables from per-
colation theory and a finite-size-scaling analysis. Besides the
weight �L and length �=��i,j��L1 of an individual loop, we
determine its linear extensions by projecting it onto the per-
pendicular lattice axes. The larger of the two is called the
spanning length of the loop and the smaller one is called its
roughness. Consequently, a loop is called percolating if its
spanning length is equal to the system size L. This is a binary
decision for each disorder instance that is further used to
obtain the percolation probability PL�� , pI/II� for a lattice of a
certain size at a given value of the disorder and dilution
parameters � and p= pI/II, respectively. Note that system
spanning loops are a direct consequence of the periodic
boundary conditions we employ. For completeness, we note
that we used the number 1 to signify a sample containing a
percolating loop and 0 otherwise. In practice, we fix one of
the parameters, say �, and tune the value of p so as to deter-
mine the critical point pc beyond which percolating loops
emerge in the limit of large system sizes at that particular
value of �. For clarity, PL�� , p� at fixed � is simply denoted
as PL�p�. Referring to percolation theory �2�, PL�p� is ex-
pected to scale as PL�p�� f1��p− pc�L1/��, where � denotes
the critical exponent that describes the divergence of the
typical length scale as the critical point is approached. Since
we consider stringlike objects, it is possible to find more than
just one percolating loop per disorder instance. In a preced-
ing work �11� we found that the average number of percolat-
ing loops per sample satisfies the scaling relation 	N

� f2��p− pc�L1/�� governed by the same values for pc and �
as the percolation probability. Therein 	N
 was found to ex-
ceed a value of 1 above the critical point, similar to what was
found earlier for a different loop percolation model subject to
optimization constraints �10�. This is in contrast to usual
random-bond percolation, where the objects of interest are
cluster of connected sites on the lattice and where there is a
unique percolating cluster above the percolation threshold.

A. Type I dilution

As described above, we allow for a fraction pI of edges
that carry zero weight. A loop can include those edges with-
out increasing its weight or the configurational energy. As a
consequence, for values of pI�0 percolating loops can
emerge even if the disorder parameter � has a value smaller
than its critical value along the pI=0 axis, i.e., �=0.34. In
particular for pI�0.5, there is a system spanning cluster of
edges with zero weight and for L→� an arbitrarily small
value of � will suffice to generate percolating loops on the
lattice.

First, we probed the critical line that separates the nonper-
colating �small pI at fixed �� and the percolating domains in
the disorder-dilution plane. For this purpose, we performed
simulations for systems of size L=24, . . . ,128, the number of
samples ranging from 32 000 for L=24 to 12 800 for the
largest systems. Within the scaling analysis, we fixed the
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disorder parameter � at values listed in Table I and varied the
dilution pI so as to determine the critical point pI

c at which
percolating loops emerge. As an indicator for the transition,
we therefore study the finite-size-percolation probability
PL�pI�. The resulting phase diagram is depicted in Fig. 3�a�
and a scaling analysis for one of the points along the critical
line is shown in Fig. 4�a�. A data collapse involving data sets
for different system sizes L can be used to estimate pI

c and �.
The quality of the data collapse is therein measured by the
mean-square distance S of the data sets to the master curve in
units of the standard error �18�; see Table I. For the example
illustrated in Fig. 4�a�, where the disorder parameter was
fixed to �=0.25, the scaling analysis resulted in a value pc
=0.184�2� for the dilution above which percolating loops are
present in the system. It further yields a value �=1.52�11�
for the critical exponent that describes the divergence of the
correlation length. For consistency, we checked some of the
points by performing simulations along both axis: in addition
to the data obtained at fixed � we performed simulations at
fixed pI, probing the critical point along the � axis. For ex-
ample, probing along the pI axis at �=0.2 we found pI

c

=0.264�2�, while probing along the � axis at pI=0.264 we
obtained �=0.200�2� in complete agreement. Albeit the
sample numbers in the present study are somewhat smaller

than in �11� that led to the estimate of � at pI=0, the numeri-
cal values we obtain for � along the critical line are consis-
tent with the value of �=1.49�7� reported there. This leads us
to conclude that type I dilution does not change the univer-
sality class of NWP. Considering the percolation probability,
all data sets that led to the estimates of pI and � listed in
Table I can be collapsed onto one curve. This is achieved by
plotting the percolation probability as a function of the quan-
tity ��pI− pI

c�L1/����, where �=−0.52�5�. Such a behavior
was also observed, e.g., in connection with the percolation of
polyatomic species on a square lattice �19�. Finally, note that
it is not possible to find negative-weighted loops along the
pI=1 and �=0 axes since at least one edge with a negative
edge weight is needed in order to form a loop.

B. Type II dilution

As detailed above, we allow for a fraction pII of absent
edges on the lattice. In terms of random-bond percolation,
one can expect that the lattice decomposes into independent
clusters of connected sites for pII�1 /2. Therefore, it is very
unlikely to find negative-weighted loops with a spanning
length equal to L for values of the dilution that exceed pII
=1 /2. Proceeding as above, we fixed the value of the disor-
der parameter to the values listed in Table II and tuned the
value of the dilution parameter so as to probe the corre-

TABLE I. Critical points in the disorder-dilution plane for type
I dilution. From left to right: numerical value of the disorder ���
parameter and the dilution �pI� along the critical line �the values
without error bars were kept fixed� and critical exponent � that
describes the divergence of the correlation length. S measures the
quality of the data collapse as the mean-square distance of the data
sets to the master curve in units of the standard error.

� pI � S

0.05 0.449�2� 1.49�13� 1.19

0.10 0.394�2� 1.52�14� 1.19

0.15 0.334�1� 1.52�2� 1.43

0.20 0.264�2� 1.52�9� 1.00

0.200�2� 0.264 1.45�12� 0.91

0.25 0.184�2� 1.52�11� 1.21

0.249�2� 0.184 1.51�14� 0.91

0.30 0.088�2� 1.51�7� 0.72

0.340�1� 0.000 1.49�7� 0.91
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FIG. 3. �Color online� Critical lines in the disorder-dilution
planes. ��a� and �b�� Phase diagram for type I and type II dilutions,
respectively. �a� signifies a domain in the disorder-dilution plane
without percolating loops and �b� labels a domain where percolating
loops are present.
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FIG. 4. �Color online� Scaling analysis to probe points along the
critical lines in the disorder-dilution planes. �a� For a disorder pa-
rameter fixed to �=0.25, the scaling analysis of the percolation
probability PL yields a critical value pI

c=0.184�2� for the dilution
above which percolating loops appear in the system. It further
yields a critical exponent �=1.52�11�. �b� For a disorder parameter
fixed to �=1.0, the scaling analysis of the normalized average box
size AL yields a critical value pII

c =0.4998�5� for the dilution param-
eter and a critical exponent �=1.33�5�.
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sponding critical points pII
c , above which percolating loops

cease to exist �large pII at fixed ��. We performed simulations
for systems of size L=32, . . . ,128. The number of samples
ranged from 19 200 for L=32 to 12 800 for the largest sys-
tems. We performed in each case a FSS analysis. Only at
�=1.0 we carried out further simulations at L=192 �9600
samples� so as to decrease finite-size effects further and to
establish a more reliable scaling analysis to settle a value for
the critical exponent �. Figure 4�b� illustrates a scaling
analysis for fixed �=1.0, corresponding to the rightmost data
point in Fig. 3�b�. Instead of the percolation probability
shown for the type I dilution in Fig. 4�a�, we here show the
average area 	AL
�	�x��y
 /L2 of the smallest box that fits
the largest loop on the lattice normalized by the system size.
In the same manner as the percolation probability, this quan-
tity approaches a step function in the limit of large system
sizes and its finite-size scaling behavior follows the analo-
gous form 	AL
� f3��pII− pII

c �L1/��. For fixed �=1.0 the FSS
of the observable AL yields a critical value pII

c =0.4998�5� of
the dilution parameter and the critical exponent �=1.33�5�
with a quality S=1.25 of the data collapse. These findings are
in complete agreement with the corresponding values listed
in Table II that were obtained by means of the percolation
probability. It is interesting to note that the exponent �
steadily decreases from the value �=1.49�7� found for the
undiluted model at �=0.340�1� to the value �=1.33�5� at �
=1.0 and pII=0.4998�5�; see Table III. The latter two values

are also characteristic for random-bond percolation in 2d,
that is the accompanying process for NWP subject to the
type of dilution under investigation.

So as to support our intuition regarding the behavior of
the correlation-length exponent �, we first consider a disor-
der parameter � close to but above the critical point �c of the
undiluted model. Here, small values of pII are relevant; see
Fig. 3�b�. At small values of pII, missing edges will not touch
other missing edges or form at most small clusters of missing
edges. Hence a path can easily avoid those missing edges.
Consequently, the behavior is the same as for the percolation
transition for the undiluted model, resulting in a correlation-
length exponent �=1.49�7�.

The situation changes somewhat if we consider larger val-
ues of the disorder parameter ��1. This means for the edges
which are present, half of them have negative weight, hence
it is “easy” in principle to form spanning loops of negative
total weight. In particular the percolating loop has strongly
negative total weight, which means that typical extensive
subpaths will have negative weight as well. This means that
statistically the percolating loops exhibit transitivity, like per-
colating paths in standard bond percolation. Furthermore,
system spanning loops cease to exist above pII�0.5. At thus
large values of pII, clusters of missing edges dilute the lattice
notably, and eventually percolate �bear in mind that pII
�0.5 is consistent with the threshold for bond percolation on
a 2d square lattice�. Hence, the disappearance of negative
weight spanning loops is driven by the standard percolation
of missing edges. Consequently, this percolation transition is
governed by the correlation-length exponent of standard per-
colation �=4 /3.

This might explain why the exponent � is not sensitive to
small values of the dilution parameter at � above but close to
�c.

However, the change in the exponent � indicates that the
introduction of type II dilution changes the universality class
of NWP. In particular, since the value of � is compatible with
the standard percolation exponent, we ask the question
whether the NWP is here equivalent to standard percolation,
although we look for loops of negative weight instead for
percolating clusters. In the following we present a more de-
tailed analysis of the critical point at �=1.0 and pII
=0.4998�5�, which shows that indeed the NWP behavior at
�=1.0 is not equivalent to standard percolation.

C. Detailed analysis at �=1.0 and pII
c =0.4998(5)

Above we found the critical point pII
c and the exponent �

from a FSS analysis of the average normalized box size AL.

TABLE II. Critical points in the disorder-dilution plane for type
II dilution. From left to right: numerical value of the disorder ���
and dilution �pII� parameter along the critical line �the values with-
out error bars were kept fixed� and critical exponent � that describes
the divergence of the correlation length. S measures the quality of
the data collapse as the mean-square distance of the data sets to the
master curve in units of the standard error.

� pII � S

0.340�1� 0.0 1.49�7� 0.91

0.4 0.125�2� 1.49�9� 0.97

0.5 0.265�2� 1.49�15� 1.02

0.6 0.357�2� 1.49�11� 1.03

0.7 0.420�2� 1.47�11� 1.02

0.8 0.463�1� 1.47�11� 0.93

0.9 0.4893�9� 1.41�8� 1.20

1.0 0.4998�5� 1.33�5� 0.98

TABLE III. Critical points and exponents. From left to right: type �RBP: random-bond percolation, NWP:
negative-weight percolation�, dilution �pII� and disorder ��� parameters �note that there is no entry for RBP
since the disorder parameter � introduced here has no analog in usual random percolation�, critical exponent
of the correlation length �, percolation strength �, exponent 	, Fisher exponent 
, and fractal dimension df at
criticality.

Type pII �c � � 	 
 df

RBP 0.5 4/3 5/36 43/18 187/91 91/48

NWP 0.0 0.340�1� 1.49�7� 1.07�6� 0.77�7� 2.59�3� 1.266�2�
NWP 0.4998�5� 1.0 1.33�5� 0.89�4� 0.89�6� 2.54�5� 1.333�2�
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Further, the average normalized loop length PL
��	�
 /L2 can

be used to obtain a further critical exponent, namely, the
percolation strength �, by use of the scaling assumption PL

�

�L−�/�f4��pII− pII
c �L1/�� as suggested by the corresponding

observables known from percolation theory. From the FSS of
PL

� we obtained the critical exponent �=0.89�6� with a qual-
ity S=0.97 of the scaling assumption; see Fig. 5 and Table
III. In the formula above, the value of � refers to the length
of the largest loop found for a given realization of the disor-
der. At criticality this reduces to PL

��L−�/�.
Next, we consider the fractal �scaling� dimension of the

loops defined via 	�
�Ldf. The value of df is bounded by the
intrinsic dimension of a line and the topological dimension
of the environment to 1�df �2. From scaling theory, we
obtain the relation df =2−� /�. This scaling relation may fur-
ther be used to check for consistency as we employ two
different methods to estimate critical exponents, i.e., a data
collapse involving data at different values of pII and an
analysis of the algebraic scaling of different observables
right at the critical point. A simple fit to the power-law data,
shown in Fig. 6�a�, yields the exponent df =1.333�2� with
quality Q=0.51 �20�. This is compatible with the scaling
relation within error bars, given the values determined above

for � and �. Interestingly, the value of df found here coin-
cides with the fractal dimension of self-avoiding walks on a
regular lattice �df

SAW=4 /3� and of exterior perimeters mea-
sured for 2d percolation clusters at the percolation threshold
�21�. Moreover, it compares well with the value df

BB

=1.34�2� that describes the scaling of the average backbone
perimeter with system size, measured for random percolation
at the percolation threshold �22�. This suggests, in analogy
with the conclusions of �22�, that negative-weighted loops at
�� , pII�= �1.0,0.4998� belong to the same universality class
as self-avoiding walks. This appears to be reasonable to us,
because �a� the percolating loops are by definition self-
avoiding, �b� at large values of � they exhibit transitivity like
in standard bond percolation, as discussed above, �c� close to
pII=0.5 the loops live on the percolating backbone of the
present edges. The roughness of the loops is expected to
display the critical scaling 	r
�Ldr with a roughness expo-
nent dr=1. The fit to the power-law data, also shown in Fig.
6�a�, yields indeed the exponent dr=0.998�2� with quality
Q=0.33, highlighting the self-similar nature of the loops.

The susceptibility �L= �	�2
− 	�
2� /L2, which measures
the mean-square fluctuation of the loop length, exhibits the
critical scaling �L�L	/� that allows one to determine the
critical exponent 	=0.89�4� with a quality Q=0.56 of the fit;
see again Fig. 6�a�. It is connected to the other exponents via
the scaling relation 	+2�=2�, which is fulfilled within error
bars.

Note that an analysis of the effective �local� exponents of
the data belonging to 	�
, 	r
, and �L yields the asymptotic
scaling exponents df =1.33�1�, dr=0.99�1�, and 	=0.89�6�
compatible with the values found above but with somewhat
larger error bars; see Fig. 6�b�.

As evident from Fig. 7, the distributions DL��� of the
largest loops � found for each realization of the disorder for
different system sizes L show a nice data collapse after a
rescaling to the form DL���=L−df f5�� /Ldf�. This means that
not only the average 	�
 but the full distribution scales with
df, again highlighting the fractal nature of the loops. Therein,
the peak close to � /Ldf =0.25 stems from the nonspanning
loops and the peak close to � /Ldf =0.75 stems from those that
truly span the lattice along at least one direction. At the criti-
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FIG. 5. �Color online� FSS of the average normalized loop
length PL

� that leads to the estimate of � listed in Table III. Here, the
data collapse is best near the critical point while there are correc-
tions to scaling off criticality.
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FIG. 6. �Color online� Analysis of the fractal dimension df, the
roughness exponent dr, and the exponent 	 /� that relates to the
fluctuations of the loop lengths at �=1.0 and pII=0.4998�5�. �a�
Estimation of the above exponents by means of a pure fit to the
power-law data. �b� Estimation of the asymptotic exponents by ex-
trapolation using the effective �local� exponents of the data points
shown in �a�.
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cal point, we further expect the distribution ns of all loop
lengths s, excluding loops with a spanning length L, to ex-
hibit an algebraic scaling ns�s−
, where 
 signifies the
Fisher exponent. The exponent 
 characterizes the complete
ensemble of loops and it is related to the fractal exponent of
the loops via 
−1=d /df. Here, we found a value of 

=2.54�5�; see inset of Fig. 7, in agreement with the latter
scaling relation.

IV. CONCLUSIONS

In summary, we performed numerical simulations in order
to probe the effect of dilution on the critical properties of
NWP on 2d lattice graphs. In this context and by means of
exact combinatorial optimization algorithms we have inves-
tigated two different types of dilution. One type affects the
distribution of weights that are associated with the edges, the
other type has an impact on the topology of the underlying
lattice. We used observables from percolation theory and a
FSS analysis so as to probe critical points along the critical
lines in the disorder-dilution plane that separate domains that
allow or disallow system spanning, i.e., percolating loops.
We found that the first type of dilution does not change the
universality class of NWP, i.e., the critical exponents are the
same as for the undiluted model. The second type of dilution
very well leads to a change in the universality class: as the

disorder on the lattice increases, the critical exponent � as
well as the critical point of dilution approaches the corre-
sponding values known from usual random-bond percola-
tion, although the process, also due to its stringlike nature, is
clearly different from standard percolation, also visible
through the values of the other critical exponents. A more
detailed analysis of the critical exponents for one particular
critical point in the disorder-dilution plane, i.e., �� , pII�
= �1.0,0.4998�, verified that the exponents are connected by
the usual scaling relations. Moreover, the results for the scal-
ing behavior of the percolating loops suggest that negative-
weighted loops at that particular critical point belong to the
same universality class as self-avoiding walks with a fractal
dimension �d+2� /3 �23�.
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